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Abstract—Generalized frequency division multiplexing
(GFDM) is a multicarrier system employing well-localized
prototype filters to form the transmitted signal. However,
because of the non-orthogonality of the waveform, the
demodulation process of GFDM inherits a noise enhancement,
which leads to the performance degradation. Eigenvalues of the
GFDM matrix determine the level of noise enhancement. In this
paper, by defining the condition number of the GFDM matrix
as the noise enhancement factor (NEF), we derive a closed-form
presentation of NEF criterion based on the prototype filter
shape. We show that the value of NEF is independent of the
number of subsymbols and subchannels, if they are even;
contrarily, for odd numbers, a larger NEF is resulted as the
number grows up.

Index Terms—Condition number, GFDM matrix, Noise en-
hancement

I. INTRODUCTION

Generalized frequency division multiplexing (GFDM) has
been introduced as a replacement for orthogonal frequency
division multiplexing (OFDM) in future networks [1]. In
GFDM, the high out-of-band emission problem of OFDM is
tackled by shaping the transmitted signal with spectral well-
localized filters [2]. In general, the complexity of GFDM
implementation is more than that of OFDM; however, in
some works, low latency and simplified versions of GFDM
are developed [3]. Despite all advantages, the demodulation
of GFDM involves a noise enhancement which leads to
degradation of the bit error rate (BER) performance. Noise
enhancement is a result of the non-orthogonal nature of GFDM
and tightly depends on the configuration of the prototype filter.
This dependency is such that in some cases the implementation
of GFDM becomes infeasible [4]. In this paper, we investigate
the noise enhancement source by extracting the eigenvalues
of the GFDM matrix and define the noise enhancement factor
(NEF) based on the dispersion of these eigenvalues. We show
how the number of subsymbols and subchannels in GFDM
determine the eigenvalues, and eventually, impact the NEF.
The rest of this paper is organized as follows. In Section II,
the system model of GFDM is presented. Section III describes
the NEF and its relation to the GFDM parameters. Finally,
Section IV concludes the paper.

II. SYSTEM MODEL

In a GFDM system with K subsymbols and L subchannels,
by defining N = KL, the modulator’s output vector is given as
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s = Ad, where s ∈ CN×1 is the GFDM modulator’s output
vector and d ∈ CN×1 is the vector of data symbols. A =
[G0,G1, . . .GK−1] ∈ CN×N is also known as the GFDM
matrix, in which the (m, l)th entry of Gk ∈ CN×L (for k =
0, . . .K − 1) is given as [5]

[Gk]m,l = g[(m− kL)N ] ej2πml/L. (1)

where (.)N denotes the modulo of N . Passing through the
channel, the received signal vector yields to [6]

y = Hs + w = HAd + w, (2)

where H ∈ CN×N denotes the circular matrix of the channel
impulse response and w is the additive noise vector with the
power of N0. In order to estimate data symbol vector d, the
zero forcing (ZF) matrix (HA)−1 is applied to the received
vector, such that

d̂ = (HA)−1y = d + (HA)−1w, (3)

where d̂ denotes the estimated symbol vector.

III. GFDM OUTPUT NOISE

A. NEF Definition

According to (3), the final noise vector contaminating the
estimated data symbols is (HA)−1w. Obviously, GFDM
matrix A impacts the output noise, and consequently, affects
the bit error probability (BEP) at the detection process. In
order to investigate the effect of A on the noise, without loss
of generality, let us suppose that the channel is AWGN. With
this respect, the BEP of GFDM becomes [3]

pb ≈
2(
√
M− 1)√

Mlog2(M)
erfc

(√
3log2(M)

2(M− 1)
× Eb
ξN0

)
, (4)

where Eb is the average energy per bit in theM-QAM constel-
lation and ξ = 1

N

∑N−1
i=0

1/λi, in which λi, for i = 0, . . . N−1,
denote the eigenvalues of Ψ = AHA. According to (4), ξ
(the average of 1/λi’s) is acting as a noise power multiplier
in BEP. Therefore, in some works (e.g. [2]), ξ is used as
a criterion to determine the noise enhancement in GFDM.
However, investigating the value of ξ is not straightforward.

Nevertheless, recall from (1) that the entries of A depend on
the prototype filter g[m]. Since g[m] has a normalized power
shape, we have always 1

N ‖A‖
2
2 = 1, which indicates that

1
N

∑N−1
i=0 λi = 1. In other words, regardless of the prototype

filter’s shape, the average of λi’s is always fixed to the unit
value. Thus, one can conclude that pb is mainly determined
by those small eigenvalues which are λi < 1, and the other
eigenvalues have a negligible effect. In this regard, to simply
investigate the effect of the filter’s shape on the output noise,
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we define the condition number of Ψ as the noise enhancement
factor (NEF) in GFDM. Condition number is a measure of
eigenvalues dispersion and is given as

χ =
λmax

λmin
, (5)

where λmax = max
i
{λi} and λmin = min

i
{λi}. According

to the discussion above, the NEF criterion in (5) is important
and must be taken into account, for the purpose of comparing
and designing GFDM prototype filters.

B. Calculating the Eigenvalues

The first step to investigate the NEF in (5) is to obtain the
eigenvalues of Ψ for a given filter g[m]. Before doing that,
let us have a look at the structure of matrix Ψ.

If we consider that, for k1, k2 = 0, . . .K − 1, Ψ(k1,k2) ∈
CL×L is the (k1, k2)th submatrix of Ψ ∈ CN×N , from the
definition of A, one can see that Ψ(k1,k2) = GH

k1
Gk2 . Thus,

according to (1), for l1, l2 = 0, . . . L − 1, the (l1, l2)th entry
of Ψ(k1,k2) becomes

ψ
(k1,k2)
(l1,l2) =

N−1∑
m=0

g[m]g[(m+ ∆k L)N ] e−j2πm∆l/L, (6)

where ∆k = k1−k2 and ∆l = l1−l2. As (6) shows, the value
of ψ(k1,k2)

(l1,l2) just depends on ∆k and ∆l. Thus, for more facility,

we abuse the notations and present ψ(k1,k2)
(l1,l2) with ψ

(∆k)
(∆l) and

indicate Ψ(k1,k2) with Ψ(∆k) at the rest of this paper.
On the other hand, since the prototype filter g[m] has

a symmetric shape in time and frequency, and satisfies the
orthogonality condition [5], it is concluded that ψ(∆k)

(∆l) is also
a real and symmetric function in both time and frequency
domains, so that ψ(∆k)

(∆l) = ψ
(−∆k)
(∆l) = ψ

(∆k)
(−∆l). Considering

the time symmetry (i.e. ψ(∆k)
(∆l) = ψ

(−∆k)
(∆l) ), it is obtained that

Ψ(∆k) = Ψ(−∆k). In this regard, since Ψ(∆k) is a submatrix
of Ψ, it is concluded that Ψ has the following block circular
structure

Ψ =


Ψ(0) Ψ(1) · · · Ψ(K−1)

Ψ(1) Ψ(0) ↘
...

... ↘ ↘ Ψ(1)

Ψ(K−1) · · · Ψ(1) Ψ(0)

 . (7)

Furthermore, regarding the frequency symmetry (i.e. ψ(∆k)
(∆l) =

ψ
(∆k)
(−∆l)) and the fact that ψ(∆k)

(∆l) is the (l1, l2)th entry of
Ψ(∆k), one can see that in (7), each of Ψ(∆k) for ∆k =
0, . . .K − 1, also has a circular structure such that

Ψ(∆k) =


ψ

(∆k)
(0) ψ

(∆k)
(1) · · · ψ

(∆k)
(L−1)

ψ
(∆k)
(1) ψ

(∆k)
(0) ↘

...
... ↘ ↘ ψ

(∆k)
(1)

ψ
(∆k)
(L−1) · · · ψ

(∆k)
(1) ψ

(∆k)
(0)

 . (8)

By considering (7) and (8), it is clear that Ψ is a block circular
matrix with circular submatrices nested in.

Now, let us obtain the eigenvalue decomposition (EVD) of
Ψ. To this end, we start with the EVD of Ψ(∆k). Since Ψ(∆k)

is a circular matrix, its EVD is given as [7]

Ψ(∆k) = FL Ω(∆k) FHL , (9)

where FL is the L-point DFT matrix and Ω(∆k) is a diagonal
matrix holding the eigenvalues of Ψ(∆k), in which the uth
diagonal entry is

Ω
(∆k)
(u) =

L−1∑
∆l=0

ψ
(∆k)
(∆l) e

−j2π u∆l /L. (10)

By replacing (9) in (7), we can represent Ψ as

Ψ = (IK ⊗ FL)


Ω(0) Ω(1) · · · Ω(K−1)

Ω(1) Ω(0) ↘
...

... ↘ ↘ Ω(1)

Ω(K−1) · · · Ω(1) Ω(0)


︸ ︷︷ ︸

Ω

(
IK ⊗ FHL

)
,

(11)
where ⊗ denotes the Kronecker product. From (11), it can
be seen that Ω is a block circular matrix constructed with
diagonal submatrices Ω(∆k) ∈ CL×L. Thus, similar to what
we did in (9), one can rewrite Ω as

Ω = (FK ⊗ IL)


Λ(0) 0

Λ(1)

. . .
0 Λ(K−1)


︸ ︷︷ ︸

Λ

(
FHK ⊗ IL

)
,

(12)
where FK is the K-point DFT matrix and Λ(v) ∈ CL×L, for
v = 0, . . .K−1, is a diagonal matrix with the uth entry equal
to

Λ
(v)
(u) =

K−1∑
∆k=0

Ω
(∆k)
(u) e−j2πv∆k/K . (13)

Finally, by substituting (12) in (11), EVD of Ψ is given as

Ψ = (FK ⊗ FL) Λ
(
FHK ⊗ FHL

)
. (14)

In (14), FK⊗FL is a unitary matrix and Λ is a diagonal matrix
containing eigenvalues of Ψ. Entries on the main diagonal of
Λ are obtained by substituting (10) in (13) as

Λ
(v)
(u) =

K−1∑
∆k=0

L−1∑
∆l=0

ψ
(∆k)
(∆l) e

−j2πu∆l /L e−j2π v∆k /K . (15)

Note that Λ
(v)
(u) is the uth entry of Λ(v), where Λ(v) is the vth

submatrix of Λ (for u = 0, ...L − 1 and v = 0, ...K − 1). In
other words, for i = 0, ...N − 1, the ith eigenvalue of Ψ can
be presented as

λi = Λ
(v)
(u); i = vL+ u. (16)

Authorized licensed use limited to: University of Exeter. Downloaded on May 04,2020 at 17:15:48 UTC from IEEE Xplore.  Restrictions apply. 



2162-2337 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LWC.2020.2983367, IEEE Wireless
Communications Letters

0 5 10 15
0

1

2

0 5 10 15
0

1

2

0 5 10 15
0

1

2

0 10 20
0

1

2

Fig. 1. Eigenvalues of the GFDM matrix for RRC pulse shape with α = 0.5,
when (K,L) = (4, 4), (4, 5), (5, 4) and (5, 5). Usually in practice, K is
taken odd and L is set to an even number; however, to have a complete
discussion, herein we covered all theoretically possible cases.

So far, we have inferred the eigenvalues of Ψ in (15) and (16).
We can simplify this derivation by replacing (6) and (15) in
(16), which yields to

λi = L

∣∣∣∣∣
K−1∑
k=0

g[(kL− u)N ] e−j2πvk/K

∣∣∣∣∣
2

; i = vL+ u. (17)

Eq. (17) is the simplified and closed-form presentation of
eigenvalues of the GFDM matrix in terms of the prototype
filter shape in the time domain, g[m]. It is noteworthy that
to present the eigenvalues in terms of prototype filter in the
frequency domain, one can use DFT properties [8], and rep-

resent (17) as λi = 1
L

∣∣∣∑L−1
l=0 G[vL− lK] exp(j2πul/L)

∣∣∣2,
where G[n], for n = 0, . . . N − 1, is the Fourier transform
of g[m]. As an example of using (17), Fig. 1 illustrates λi’s
for the root raised cosine (RRC)1 prototype filter with roll-
off factor α = 0.5. In this figure, (K,L) pair takes different
values (4, 4), (4, 5), (5, 4) and (5, 5).

C. Calculating the NEF

In this section, we talk about obtaining the NEF in (5) by
using the achieved eigenvalues in (17). To this purpose, recall
that g[m] is a real-valued and symmetric pulse shape. This
fact leads to an interesting feature of eigenvalues in (17). That
feature is that λmax and λmin can be simply acquired as

λmax = λv′L,
λmin = λv′L+u′ ,

(18)

where

v′ =


K
2 ; evenK

K±1
2 ; oddK

, u′ =


L
2 ; evenL

L±1
2 ; oddL

.

For instance, in Fig. 1, it can be seen that λmax and λmin

take place as shown in (18). To have a better intuition of
λmax and λmin, for a given K and L, let us rewrite (17)

as λvL+u =
∣∣∣∑K−1

k=0 f [kL− u] exp(jh(v,u)[kL− u])
∣∣∣2 in

1In this paper, we studied the RRC filter, for instance. However, all provided
derivations are applicable for any other orthogonal pulse shapes used in
GFDM.

which f [m] = L2g[m] and h(v,u)[m] = −2πv(m + u)/N .
By this consideration, nesting (18) in (5) leads to the NEF as

χ =

∣∣∣∣K−1∑
k=0

f [kL] exp(jh(v′,0)[kL])

∣∣∣∣2∣∣∣∣K−1∑
k=0

f [kL− u′] exp(jh(v′,u′)[kL− u′])
∣∣∣∣2
. (19)

According to (19), Fig. 2 presents f [KL], f [kL− u′],
h(v′,0)[kL] and h(v′,u′)[kL− u′], for the given (K,L)’s in Fig.
1. As it can be seen, for the case where (K,L) is (even, even)
numbers, the involved components in λmin cancel each other
and we have always λmin = 0. In this case, Ψ is a singular
matrix and the NEF in (19) becomes χ→∞. This means that
the output noise power is infinite and GFDM demodulation
is infeasible. To address this concern, in some works, such
as [9], the authors develop a method which shifts f [m] or
h(v,u)[m] to the left or right (see Fig. 2(a)), to avoid the
singularity. However, according to Fig. 2, for the other cases
(where (K,L) is not (even, even)) the singularity of Ψ does
not occur. The plots in Fig. 1 also confirm these results. To
elaborate the value of NEF when (K,L) is not (even, even),
in Fig. 3 we have plotted χ, given in (19). In Fig. 3(a), K = 5
and χ is calculated for different L’s. As it can be seen, the
NEF curve has up-and-down fluctuations, for even and odd
values of L, such that for even L’s, the NEF always remains
constant (in this example χ ≈ 8.5); however, for odd L’s it
has a logarithmic escalation converging to the stable point (i.e.
χ ≈ 8.5) as L increases. In addition, Fig. 3(b) illustrates the
NEF for different K’s, when L = 31 (note that although in
practice, L usually takes even numbers, in this plot we choose
odd L to make sure that the singularity never happens for any
case study number of K). It is obvious that NEF in this figure
also has up-and-down fluctuations for even and odd values
of K, so that for even K’s, NEF is always stable (in this
example χ ≈ 390) and for odd K’s, it has an exponential
escalation as K increases. Besides, interestingly the steady
trend of even K’s meets the exponential trend of odd K’s at
the point where K = L (in this example K = 31). These
results are more sensible by looking at the plots in Fig. 2.
All in all, the achievements in this section can be wrapped up
as follows: in a GFDM system, each of K and L parameters
can theoretically take even or odd numbers. If a parameter is
even, in terms of NEF, it does not matter which even number
that parameter takes. On the other hand, if a parameter is odd,
the number set to that parameter affects the NEF, such that a
larger odd K escalates NEF exponentially; while a larger odd
L increases the NEF logarithmically.

Another point is that in this article, the NEF of GFDM
is provided for the AWGN channel, where the noise is
determined just by the GFDM matrix. Contrarily, in fading
channels, the NEF not only depends on the GFDM matrix, but
also tangles with the channel frequency response [2]. However,
with a good approximation, the contribution of the GFDM
matrix in NEF provided in this article, can be extended to
that of fading channels. To verify this statement and the other
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Fig. 2. Illustrating the involved values in λmax and λmin, with dark circles and bright squares, respectively. The plots are given when (K,L) is (a)
(even, even), (b) (even, odd), (c) (odd, even), and (d) (odd, odd).
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Fig. 4. The BER of GFDM using 4-QAM constellation and RRC filter with α = 0.5 in AWGN and fading channels. It is considered that K = 5, 11, 15;
when (a) L = 32, (b) L = 64, and (c) L = 128.

aforementioned achievements, Fig. 4 presents the BER results
for the simulated GFDM in both AWGN and Vehicular-A
fading channel, when K = 5, 7, 11; and L = 32, 64, 128. In
the case of AWGN channel, by separately looking at each
Fig. 4(a), Fig. 4(b) and Fig. 4(c), it is seen that while L is
an even number, a higher BER is delivered for a larger odd
K; however, by comparing Fig. 4(a), Fig. 4(b) and Fig. 4(c)
together, one can see that for an odd K, by increasing the even
L, the BER curves remain identical. These results confirm the
achievements in Fig. 3. On the other hand, in Fig. 4 the same
behavior is observed for the BER in the fading channel. The
only difference is that in this case, BER slightly grows up
as the even L increases, which is caused by the frequency
selectivity of the channel.

IV. CONCLUSIONS

In this article, we showed that the noise enhancement factor
(NEF) of GFDM system can be defined as the condition
number of the GFDM matrix. In order to calculate the NEF,
we obtained the eigenvalues of GFDM matrix for a given
prototype filter and then, we found a closed-form presentation
for NEF. Based on that, we showed that by considering
the number of subsymbols and subcarriers as two GFDM
parameters, the NEF is independent of the value of the even
parameter and increases as the value of the odd parameter
grows up.
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